10. Heat transfer under the heat source
The general aim of this lecture is the analysis of the heat transfer phenomenon under the heat source.  However, at first, we consider the without the heat source, but with non-homogeneous boundary conditions. Particularly, we suppose that the heat flux at the ends of the body is given. Therefore, we have the homogeneous heat equation with non-homogeneous second order boundary conditions. Changing the unknown function, we transform this problem to the non-homogeneous equation with homogeneous boundary conditions. The analogical system is the mathematical model of the heat transfer phenomenon under the heat source. This problem is solved by Fourier method. The solution of this system is found as a Fourier series. We find the corresponding Fourier coefficients using the given initial conditions. The heat transfer phenomenon under the heat source is considered as example.
10.1. Heat transfer with known heat flux at the ends
Consider again the heat transfer phenomenon for the long thin body. We have the heat equation
                                                       ut = a2 uxx, 0 < x < L, t > 0.                                               (10.1)      
The initial temperature  =(x) of the body is given, i.e. we have the initial conditions
                                                          u(x,0) = (x),  0 < x < L.                                                 (10.2)       
Suppose the heat fluxes at the left end p = p(t) and at the right end q = q(t) are given, i.e. we have  non-homogeneous second order boundary conditions
                                                  ux(0,t) = p(t),  ux(L,t) = q(t), t > 0.                                         (10.3) 
The system (10.1) – (10.3) is the mathematical model of the considered phenomenon.
We cannot to use the method of separation of variables because of the boundary conditions. Try to find the solution of this problem as the sum
                                                           u(x,t) = v(x,t) + w(x,t),                                                   (10.4)
where we choose the function w such that it satisfies the boundary conditions (10.2). Suppose the spatial derivative of the function w is linear, i.e.
wx(x,t) = (t)+(t)x.
We choose the functions  and  for obtaining the equalities (10.2). We have 
wx(x,0) = (t) = p(t),
wx(L,t) = (t)+(t)L = q(t).
Then we determine
(t) = p(t),  (t) = [q(t) – p(t)]x/L.
Now we obtain
wx(x,t) = p(t) + [q(t) – p(t)]x/L.                                             
Integrate this equality. We get
w(x,t) = p(t)x + [q(t) – p(t)]x2/2L + c,                                             
where the constant c is arbitrary. For all values of this constant, the function w satisfies the boundary conditions (10.2). Therefore, the function v of the equality (10.4) satisfies the homogeneous second order boundary conditions. We consider easiest case, where c = 0. Then we choose the function
                                                 w(x,t) = p(t)x + [q(t) – p(t)]x2/2L.                                          (10.5)                                             
Using the formula (10.5), put the function u from the equality (10.4) to the equation (10.1). We have 
vt + p'(t)x + [q'(t) – p'(t)]x2/2L] = a2vxx + [q(t) – p(t)]/L. 
Therefore, we have the equality
                                                              vt = a2vxx + f(x,t),                                                        (10.6)  
where 
f(x,t) = [q(t) – p(t)]/L – {p'(t)x + [q'(t) – p'(t)]x2/2L]} 
Now we put the function u from the equality (10.4) to the equation (10.3). We get
v(x,0) + p(0)x + [q(0) – p(0)] x2/2L = (x),
Then we obtain the initial conditions for the function v
                                                                v(x,0) = 1(x),                                                           (10.7)
where 
1(x) = (x) – {p(0)x + [q(0) – p(0)] x2/2L p(0)}.  
By choosing of the function w the boundary conditions for the function v is homogeneous
                                                        vx(x,0) =0,  v x(x,0) = 0.                                                  (10.8) 
Thus, the given problem (10.1) – (10.3) is transformed to the non-homogeneous heat equation (10.6) with initial conditions (10.7) and homogeneous boundary conditions (10.8). If we find the solution of this problem, then we will find the solution of the initial problem (10.1) – (10.3) by the formula (10.4). Note that the problem (10.6) – (10.8) has a direct physical sense.      
10.2. Mathematical model of the heat transfer under the heat source
Consider the heat transfer phenomenon for the thin long body under the heat source. This phenomenon is described by the non-homogeneous heat equation
                                                  ut = a2uxx + f(x,t), 0 < x < L, t > 0,                                      (10.9)      
where the function f characterizes the influence of the heat source.  Suppose the ends of the body are isolated. Then we have the homogeneous second order boundary conditions
                                                        ux(0,t) = 0,  ux(L,t) = 0, t > 0.                                         (10.10) 
The initial temperature  =(x) is given. Then we have the initial conditions
                                                           u(x,0) = (x),  0 < x < L.                                             (10.11)       
We have the second homogeneous boundary problem for the non-homogeneous heat equation. 
10.3. Fourier method 
We know that the corresponding homogeneous boundary problem has the solution that is represented as a cosine Fourier series. We try to find the solution of the problem (10.9) – (10.11) in the analogical form, i.e.

                                                                                                     (10.12) 
where the functions uk that are Fourier coefficients are unknown. Note that for all uk the function u of the formula (10.12) satisfies the boundary conditions (10.10). We try to find the functions uk such that the function u determined by the formula (10.12) satisfies the equation (10.9) and the boundary conditions (10.11). 
Put the function u from the equality (10.12) to the equation (10.9). We get



Multiply this equality by the function  and integrate the result by x from 0 to L. We have

 (10.13)
Find the integral


Determine



If  we can find



For k = n and  we get


Finally, for k = n = 0 we obtain


Putting the results to the formula (10.13), we obtain

                                                                             (10.14)  
where

                                                   (10.15)
If the function un satisfies the equation (10.14), then the function u determined by the formula (7.12) is the solution of the non-homogeneous heat equation (10.9) with boundary conditions (10.10).
Put the function u from the formula (10.12) to the initial conditions (10.11). We get



Multiply this equality by the function  and integrate the result by x from 0 to L. We have


Using the previous results, determine                                              

                                                                                                        (10.16)
where

                                                                     (10.17)
If the function un satisfies the conditions (10.16), then the function u determined by the formula (10.12) satisfies the initial conditions (10.11).
Thus, it is necessary to solve the problem (10.14), (10.16) for determining the Fourier coefficient un. 
10.4. Finding the solution of the problem
Find the solution of the problem (10.14), (10.16). Determine the value


because of the equality (10.14). After integration we have

 
Using the equality (10.16), we find


Put this value to the formula (10.12). We determine the solution of the problem (10.9) – (10.11) 

                     (10.18)  
Thus, the solution of the considered problem is determined by the formula (10.18), where the Fourier coefficients of the given functions are determined by the formulas (10.15) and (10.17).
We can transform this result. Put the values of the Fourier coefficients of the given functions are determined by the equalities (10.15) and (10.17) to the formula (10.18). We get


Determine the Green function

                                             (10.19)         
Then the solution of the problem (10.9) – (10.11) is determined by the formula

                                               (10.20)  
We obtain the direct dependence of the solution of the given boundary problem from its initial state the function of the heat source. Note that this Green function was be obtained before for the second order boundary problem for the heat equation without heat source.
10.5. Example
Consider the partial case of the problem (10.9) – (10.11). Let us analyze the heat transfer in the body of the length L= with coefficient a = 1. Suppose the source determines by the function 
f(x,t) = cos x. Then we have the non-homogeneous heat equation
                                               ut = uxx + cos x, 0 < x < , t > 0.                                              (10.21)
The ends of the body are isolated. Then we have the boundary conditions
                                                 ux(0,t) = 0,  ux(,t) = 0, t > 0.                                               (10.22) 
Suppose the initial temperature of the body is zero. Then we have the initial conditions
                                                       u(x,0) = 0,  0 < x < .                                                     (10.23)   
Using the formula (10.18), determine the solution of the problem (10.21) – (10.23) by the formula


Using the formulas (10.15) and (10.17), find the Fourier coefficients of the given functions 


Thus, the solution of the problem (10.21) – (10.23) is  n

                                                                      (10.24)
Check that this is, in reality, the solution of the considered problem. Find the value 
u(x,0) = 0, i.e. the initial condition is true. Using the equality


determine the truth of the boundary conditions (10.22). Finally, find


Then the function u determined by the formula (10.24) is the solution of the considered problem.
Give now the physical interpretation of the obtained result. At first, return to the problem statement. We have the thermally isolated body. The distribution of the temperature is uniformly at the initial time. There exists the constant heat source that is positive at the left part of the body and negative at its right side. Consider the result of analysis (see Figure 10.1).


Figure 9.1. Temperature distribution. 
We have the uniformly temperature distribution at the initial time. Then the temperature increase at the left side of the body, and decrease at its right side, besides the velocity of change is maximal at the ends of the body and zero at the its middle. The velocity of change of the temperature decrease by time and tends to zero, if the time tends to infinity. The temperature distribution tends to the state of equilibrium that is the function cos x.
 Explain the obtained result. We consider the body under constant heat source that is positive at the left side of the body and negative at its right side. By the influence of this heat source, the temperature at the left side of the body increases, and the temperature at its right side decreases. The body is isolated. Therefore, we have no heat exchange with environment. However, the temperature at the ends of the body become different. Then we have the heat flux from the hot left side to the cold right side of the body. This flux increase by time, because the temperature difference at the ends increases. 
Now we have two factors of the temperature change. There are the constant influence of the heat source end the increased influence of the heat flux. This influence is opposite. Particularly, the temperature at the left increases by the positive heat source and decreases, because the heat moves from the left to the right. At the initial time, we do not have the negative factor, because of the equality of the temperature at the ends of the body. The positive factor is constant, because the source does not depends from time. However, the negative factor increase by increasing of the temperature difference. Therefore, the velocity of temperature increasing decreases and tends to zero by time.   
We have the inverse situation at the right side of the body. The temperature changes there by the negative influence of the heat source and the positive influence of the heat flux.  At the initial time, we do not have the positive factor, because of the equality of the temperature at the ends of the body. The negative factor is constant, because the source does not depends from time. However, the positive factor increase by increasing of the temperature difference. Therefore, the velocity of temperature increasing decreases and tends to zero by time. We have the state of equilibrium, if the time tends to the infinity.
  Conclusions
· The heat equation with non-homogeneous boundary conditions can be transformed to the non-homogeneous heat equation with homogeneous boundary conditions.
· The heat transfer phenomenon under the heat source is described by the non-homogeneous heat equation. 
· The solution of the problem is represented as a Fourier series by the Fourier method.
· The Fourier coefficients of solution depend from the time and satisfy non-homogeneous first order ordinary differential equations with initial conditions.
· The parameters of the obtained system are Fourier coefficients of the source function and initial state.
· The direct dependence of the problem solution from the heat source and the initial state can be determined using the Green function that depends from the concrete body and does not depends from the heat source and the initial temperature.
· The concrete heat transfer phenomenon under the heat source is considered as example.
Task. Heat transfer under the heat source.
Consider the heat transfer under the exterior heat source characterized by the given function f. This phenomenon is described by non-homogeneous heat equation
ut = a2 uxx + f(x,t), 0 < x < L, t > 0.
Suppose the initial temperature is zero. Then we have the initial condition                                               
u(x,0) = 0,   0 < x < L.    
The temperature or the heat flux are zero at the ends, i.e. we have one of the following boundary conditions
                                                       u(0,t) = 0,  u(,t) = 0, t > 0;                                                   (*)
                                                      ux(0,t) = 0,  ux(,t) = 0, t > 0.                                                 (**)  


Table of parameters
	variant
	boundary condition
	L
	a
	f

	1
	**
	
	1
	cos x

	2
	*
	1
	2
	 –sin x

	3
	*
	1
	3
	sin 2x

	4
	*
	
	½
	–2 sin x

	5
	**
	1
	1
	–cos x

	6
	**
	
	½
	cos 2x

	7
	*
	
	½
	sin 2x

	8
	**
	1
	2
	cos 2x



Task:
1. Determine the solution of the problem as sinus Fourier series for the boundary conditions (*) and cosine Fourier series for the boundary conditions (**). 
2. Find the Fourier coefficient of the parameters of the system.
3. Solves ordinary differential equations with respect to the Fourier coefficients of the solution of the problem.
4. Check that this is, in reality the solution of the boundary problem. 
5. Show the graph (temperature distribution for the different time points). 
6. Give the physical interpretation of the results.




   






oleObject3.bin

image4.wmf
2

00

2

000

()()(,

coscoscoscoss

)

co

.

kk

kk

LLL

utdxaut

kxnxkkxnx

dx

nx

LLLLLL

fxtdx

pppppp

¥¥

==

æ

ç÷

ø

¢

ö

+=

è

ò

å

òò

å


oleObject4.bin

image5.wmf
0

00

()

1

coscoscoscos.

2

()

L

L

L

kxnxknxknx

LLLL

dxdxdx

pppp

éùéù

=+

êúêú

ëëû

-+

û

ò

ò

ò


oleObject5.bin

image6.wmf
0

0

coss

()()

0.

i

()

n

L

L

dx

knxLknx

LknL

pp

p

++

=

+

éù

=

êú

ëû

ò


oleObject6.bin

image7.wmf
kn

¹


oleObject7.bin

image8.wmf
0

0

coss

()()

0.

i

()

n

L

L

dx

knxLknx

LknL

pp

p

--

=

-

éù

=

êú

ëû

ò


oleObject8.bin

image9.wmf
0

k

¹


oleObject9.bin

image10.wmf
0

0

2

0

22

cossi

1

1cos.

2

n

2

22

L

L

L

nxnxLn

LL

dxd

x

LLnL

x

ppp

p

éù

=+=+

êú

æö

=

ç÷

ø

ë

è

û

ò

ò


oleObject10.bin

image11.wmf
0

0

2

os

.

c

L

L

dd

n

L

x

L

xx

p

=

æö

ç÷

è

=

ø

ò

ò


oleObject11.bin

image12.wmf
2

, 0,1,

()()(

... ,

)

nnn

a

ututft

n

n

L

p

æö

=

ç÷

èø

¢

+=


oleObject12.bin

image13.wmf
0

0

12

,  ... , 1,2

()()(,)co

,... 

s,

.

n

L

n

ftftfxtx

x

n

L

d

LL

p

=

==

ò


oleObject13.bin

image14.wmf
0

cos

(,0) (0

.

)

()

k

k

ux

kx

L

u

x

p

j

¥

=

=

=

å


oleObject14.bin

oleObject15.bin

image15.wmf
00

0

coscosco

)

s

(0)(.

L

k

k

L

kxnx

udxxd

n

x

x

LLL

ppp

j

¥

=

=

ò

å

ò


oleObject16.bin

image16.wmf
(0),  0,1,... ,

nn

un

j

==


oleObject17.bin

image17.wmf
0

0

12

, ()cos, 1,2,...

n

L

n

xdxn

x

L

LL

jj

p

j

===

ò


oleObject18.bin

image18.wmf
2222

()exp()()exp()exp

,

nnnn

aaaa

uttutu

dnnn

ttftt

n

dtLLLL

pppp

éùéù

¢

=+=

êúêú

êúêú

ëû

æöæöæöæö

ç÷ç÷ç÷ç÷

èøèøèøèø

ëû


oleObject19.bin

image19.wmf
22

0

()exp(0)()exp.

t

nnn

aa

utt

L

f

nn

L

ud

ttt

pp

=+

æöæö

ç÷ç÷

èøèø

ò


oleObject20.bin

image20.wmf
22

0

()exp()exp().

t

nnn

nn

aa

uf

L

td

L

tt

jttt

pp

æöæö

ç÷ç÷

èøè

éùéù

=-+-

êúêú

êúêú

û

ø

ëûë

ò


oleObject21.bin

image21.wmf
22

0

0

c

(,)exp()e

os.

xp()

t

nn

n

aa

uxtt

nnkx

LLL

ftd

ppp

jttt

¥

=

æöæö

ç÷ç÷

èøè

ìü

éùéù

ïï

=-+-

êúêú

íý

êúêú

ïï

ëûëû

î

ø

þ

å

ò


oleObject22.bin

image22.wmf
2

1

00

2

1

000

12

(,)()()exp

12

(,)()(,)exp()

1

coscos

coscos

co

2

s

LL

n

LLt

n

a

uxtydyydyt

LL

a

fytdy

kykxn

LLL

kykxn

LLL

ydyfytd

LL

L

k

L

jj

jt

ppp

ppp

tt

¥

=

¥

=

éù

=+-

ìü

éù

ïï

æö

íý

êú

ç÷

èø

ïï

ëû

îþ

ìü

éù

ïï

æ

+

êú

êú

ëû

éù

+-=

ê

ö

+

íý

êú

ç÷

èø

ïï

ëû

îþ

ú

êú

ëû

=+

å

òò

å

òòò

1

2

0

1

0

2

0

exp()

12

exp()

cos

c

(

os

,).

cos

L

tL

n

n

ykxn

LLL

kykxn

LL

a

tydy

a

tfydy

L

L

d

L

ppp

p

j

tt

p

t

p

¥

=

¥

=

ìü

éù

ïï

-+

êú

íý

êú

ïï

ëû

îþ

ìü

éù

ïï

++--

êú

íý

êú

ïï

æö

ç÷

è

ëû

îþ

ø

æö

ç÷

èø

ò

òò

å

å


oleObject23.bin

image1.wmf
0

co

(,) ),

s

(

k

k

uxtu

kx

L

t

p

¥

=

=

å


image23.wmf
1

2

12

(,,)ex

coscos

p.

n

a

Gxyt

kykxn

LLL

t

LL

ppp

¥

=

ìü

éù

ïï

=+-

êú

íý

êú

ïï

ëû

è

î

ö

ç÷

ø

þ

æ

å


oleObject24.bin

image24.wmf
000

(,)(,,)()(,,)(,).

LtL

uxtGxytydyGxytfydyd

jttt

=+-

òòò


oleObject25.bin

image25.wmf
(

)

22

0

0

(,)exp()exp

cos.

()

t

nn

n

uxtntfntd

kx

jttt

¥

=

ìü

éù

=-+-

íý

ëû

îþ

å

ò


oleObject26.bin

image26.wmf
01

0, 0,1,...;  ()0, ()1, ()0, 2,3,... . 

nn

nfffn

jttt

======


oleObject27.bin

image27.wmf
(

)

0

(,)exp()1

coscos.

t

t

xx

uxttde

tt

-

=--

=

ò


oleObject28.bin

oleObject1.bin

image28.wmf
(

)

(,)1

sin,

t

uxte

x

-

=--


oleObject29.bin

image29.wmf
c

(,)(,

os, (1cos

)

.

)

tt

txx

xx

uxteuxte

--

==-


oleObject30.bin

image30.emf
 

  x  

  u  

  1  

  t    

  t 1  

    

  t 2  

  t 3  

   /2  

  t= 0  

- 1  

  t 1  

  t 2  

  t 3  

  t    

  t  

  t 1  

  t 2     t 3  

  t 4  

  u | x= 0  

  u | x=   


oleObject31.bin

[image: image1]

 u|x=(







 u|x=0







 t4







 t2







 t3







 t1







 t







 t1







 t2







 t3







 t((







-1







 x







 u







 1







 t((







 t1







 (







 t2







 t3







 (/2







 t=0












image2.wmf
00

2

2

()()

cos

(,).

cos

kk

kk

uta

kxkk

utft

x

LLL

x

ppp

¥¥

==

æö

ç÷

èø

¢

+=

åå


oleObject2.bin

image3.wmf
cos

nx

L

p


